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Experiments in which a long vertical, heated wire is surrounded by concentric annuli 
of a melt and its crystalline solid show that the convection state changes from a stable 
unicell surrounded by a stationary cylindrical solid-liquid interface, to a complex 
time-dependent flow surrounded by a rotating, helical solid-liquid interface. This 
transition occurs at a Grtlshof number of approximately 150, which is an order of 
magnitude less than the critical Grashof number calculated for a liquid annulus 
surrounded by rigid walls. A linear stability analysis has been carried out for an 
infinitely tall vertical annulus. When the deformable nature of the crystal-melt 
interface is taken into account in the boundary conditions, two new modes of 
instability arise. The most dangerous mode is asymmetrical and corresponds to helical 
waves travelling vertically upwards. The critical Grashof number and the scaling 
properties of the eigenstate agree with experiments. The results clearly demonstrate 
the coupling of convection with crystal-melt interfacial instabilities. 

1. Introduction 
There has been extensive research and development on the effect of fluid flow on 

solidification and on the properties of the resulting solids (see e.g. Hurle 1977; 
Carruthers 1977 ; Pimputkar & Ostrach 1981). Morphological instabilities have been 
reviewed by Langer (1980) and Wollkind (1979), and hydrodynamic instabilities by 
Drazin & Reid (1981). The effect of convective flow on morphological stability has 
been reviewed recently by Coriell & Sekerka (1981). Delves (1974) showed theoretically 
that a flow parallel to the crystal-melt interface could increase stability and give rise 
to travelling waves on the interface. The interaction of morphological instability and 
thermosolutal instability has also been studied by Coriell et al. (1980). In both these 
cases, morphological instability occurs even in the absence of fluid flow, although in 
general the critical value of the parameter for the onset of instability is changed by 
the flow. 

A recent series of experiments (Mickalonis 1982; Glicksman & Mickalonis 1982; 
Fang 1983) have demonstrated a novel interface instability under conditions for 
which the crystal-melt interface would be morphologically stable in the absence of 
flow. In  these experiments, a long vertical cylindrical sample of high-purity succino- 
nitrile (SCN) was heated by an electrical current passed through a long coaxial 
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FIGURE 1. View of the stable cylindrical mode (a) and helical mode (b) .  The black spot on the 
right-hand side is the profile of a thermistor that detects temperature variations in the crystal. 

heating wire, so that a vertical melt annulus formed between the coaxial heating wire 
and the surrounding crystal-melt interface. The outer radius of the crystal was 
maintained at a constant temperature below the melting point of the material. This 
arrangement permits the temperature to decrease monotonically from the melt to the 
solid across the crystal-melt interface, and consequently the interface would be 
morphologically stable in the absence of fluid flow (Coriell & Sekerka 1981). 

The thermal gradients in the melt induce buoyancy forces which cause the fluid 
to flow upward near the heating wire on the axis and downward near the crystal-melt 
interface. Choi & Korpela (1980) assumed an infinite cylindrical geometry with rigid 
walls and obtained analytic solutions of the fluid-flow and temperature equations, 
in which the flow velocity is axial (vertical) and the velocity and temperature fields 
are functions of the radial coordinate alone. Choi & Korpela and Shaaban & ozisik 
(1982) used linear stability analysis to calculate the critical Grashof number for 
axisymmetric instabilities of the axisymmetric flow occurring between two vertical 
infinite coaxial cylinders held a t  different temperatures. For the Prandtl number 
corresponding to succinonitrile the flow is unstable to an infinitesimal axisymmetric 
perturbation above a Grashof number of the order of 2000, and the resulting wave 
speed of this perturbation is comparable to the maximum in the characteristic 
unperturbed flow velocity. 

In contrast, as illustrated in figure 1 the experimental observations with a 
crystal-melt interface indicate an asymmetric instability at a critical Grashof number 
of about 150 with a wave speed two orders of magnitude less than the unperturbed 
flow velocity. Therefore we have investigated the effect of a deformable crystal-melt 
interface on the stability of the flow between an infinite vertical cylinder maintained 
at a constant temperature and a coaxial crystal-melt interface. As will be described, 
the presence of the crystal-melt interface leads to additional modes of instability. 
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The geometric configuration and relative temperature profile of the experimental 
set-up. Symbols indicating radial distances imply dimensional lengths. 

2. Linear stability analysis 
2.1. Theory 

The unperturbed cylindrical melt is assumed to occupy the region i;, < i; < FL, 
- co < 5 < co, in cylindrical coordinates as shown in figure 2. Here fw is the wire 
radius, fL is the radius of the solid-liquid interface, and the outer radius of the crystal 
is i;, + 4. A bar will be used to distinguish dimensional quantities from dimensionless 
quantities where necessary. The aspect ratio of height to radius for the container used 
in the experiment was about 20. For Grashof numbers less than about 150 the 
unperturbed flow near the midsection of the tube appears to be parallel. The fluid 
flow will be described by the Navier-Stokes equations in the Oberbeck-Boussinesq 
approximation, with constant kinematic viscosity u, coefficient of thermal expansion 
B and thermal diffusivity aL. The unit of length is chosen to be z= F L - F w .  Time 
is measured in units of D / u ,  and velocity is measured in units of gBDAT/u.  
The acceleration due to gravity g points in the negative z-direction. Temperature is 
measured in units of AT, the temperature difference between the wire and the 
solid-liquid interface ; the origin of the dimensionless temperature scale is chosen so 
that the melting point of a planar crystal-melt interface is zero. 

The dimensionless equations governing the stability of the unperturbed flow are 

v - u  = 0, (1) 

au 
at 
- + G ( u * V ) U + V ~  = TZ+VZu, 

aT V2T 
-+G(u*V)  T = -, 
at P, 

(3) 

5 FLM 151 
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where the Grashof number G = pqATE3/v2, the Prandtl number P, = v/uL and 
es = v/us, with us the thermal diffusivity of the crystal. The velocity u = (u,., ufi, ur), 
p is the reduced pressure, and T and T, are the temperature in the liquid and 
solid respectively. 

The unperturbed velocity, derived by Choi & Korpela ( 1 9 8 0 ) ,  is given by 

with K = fw/fL, /I = ( 1 - K ) T  

and I? = [( 1 - K 2 )  ( 1  - 3 K 2 )  - 4 K 4  In K ] / [ (  1 -K2)' + (1  - K 4 )  h K ] .  

The unperturbed velocity vanishes at the inner cylinder r = ~ / ( 1  - K )  and at the 
unperturbed crystal-melt interface r = 1 / (  1 - K ) .  I n  addition, the net flow vanishes; 
the integral of ruzo(r) from r = K / ( ~ - K )  to r = l / ( l - ~ )  is zero. 
The unperturbed temperature fields are given by 

and 
K lnp 
K ,  1nK 

q o ( r )  = T, +L -, (7) 

where T, is the dimensionlessequilibrium temperature of the unperturbed crystal-melt 
interface, and KL and K, are thermal conductivities of liquid and crystal respectively. 
The unperturbed crystal is neither freezing nor melting. Thus for a given cylindrical 
geometry, characterized by K ,  there is a family of parallel flows with dimensional 
velocities proportional to the Grashof number. The parallel flow becomes unstable 
for large enough Grashof number. 

We decompose the fluid velocities, temperature fields and crystal-melt interface 
shape r = R($, z, t )  into unperturbed and perturbed parts, and assume that the 
$-, z-, t-dependences of the perturbed quantities are of the form 

F($,  z ,  t) = exp (in$+ikz+at), 

where n is an integer, k is a real spatial frequency, and u = ur + iui is complex and 
determines the temporal behaviour of the system. If u, > 0 for any value of n and 
k, the system is unstable. We write 

u, = Wr(r) F ,  ufi = W , ( r )  F ,  u, = uz0(r)+ W,(r) F, (8a-c) 

T = T,(r )+B(r)F,  T, = q,(r)+B,(r)F and rI = l / ( l - K ) + a F .  (8d-f)  

Here a is the amplitude of the perturbation of the solid-liquid interface. The 
linearized ordinary differential equations for the perturbed quantities are standard 
and are given in Coriell et al. ( 1 9 8 3 ) .  

The boundary conditions a t  the inner cylinder (heating wire) are the usual 
statements of 'no slip' and 'no normal flow'; also, we assume that the temperature 
perturbation vanishes. Thus at r = Fw/E = K / (  1 - K )  

w,= wr= w,=e=o. ( 9 )  

Similarly, we assume that a perturbation in temperature does not occur a t  the outer 
wall of the solid. 

The interface separating the crystal and melt is a free boundary ; the solidification 
boundary conditions (see e.g. Wollkind 1979; Coriell & Sekerka 1 9 8 1 )  a t  this interface 
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are crucial in explaining the observed phenomena. The dimensionless boundary 
conditions at the crystal-melt interface r = B($, z, t )  are 

u*n = -e(u*n),  ( 1 0 4  

together with the no-slip condition, i.e. the tangential components of u vanish. 
Equation (10 a) expresses that the temperature at the crystal-melt interface is 
continuous and is equal to the equilibrium interfacial temperature, which depends 
on the mean curvature H of the interface through the Gibbs-Thomson effect (Mullins 
1963 ; Wollkind 1979). Equilibrium thermodynamics implies that the sign of the 
curvature should be chosen such that a crystalline sphere has positive curvature 
and a liquid sphere has negative curvature. The dimensionless surface tension 
y = Fm yg/3E2/(H, v2) ,  where Fm is the absolute temperature at the melting point for 
a planar interface, 7 is the crystal-melt interface tension and H,, is the latent heat 
of fusion per unit volume of solid. The Gibbs-Thompson equation (10a) is the basis 
of the ‘grain boundary groove method ’ of measuring the crystal-melt interface 
tension, and has been applied to succinonitrile by Schaefer, Glicksman & Ayers (1975). 
Equation ( lob)  expresses conservation of energy at the interface; the latent heat 
generated by motion of the interface at velocity u is balanced by the net heat flux. 
The unit normal to the interface is denoted by n and the dimensionless latent heat 
A = H ,  gjE3/K, v. Conservation of mass at a moving crystal-melt interface requires 
a non-zero flow normal to the interface when the densities ps and pL of the solid and 
liquid respectively are unequal. This is expressed by ( l O c ) ,  where e = (p,/pL)- 1. 
Note that during crystal growth, material penetrates the crystal-melt interface, 
which is therefore not a ‘ material surface ’, for which the fluid velocity normal to the 
surface is equal to the normal velocity of the surface. 

Upon linearizing the solidification boundary conditions about the unperturbed 
solid-liquid interface at rIo = 1/( 1 - K ) ,  the following linear homogeneous boundary 
conditions can be obtained : 

a, w,+eae = 0, ( 1 1 )  

W6 = 0, (12)  

(13) a, W, + (Du,,) GO = 0, 

-a20+a %DO = 0.  
Ks 

Here 
a n2- 1 D = -  a = y  [ - ,.;, + k 2 ] - a D r ,  and a2 = DB.[al+G(D!P, , ) ( l -~)]-~~.  
ar’ 6, 

The ratio (DO,)/Os evaluated at rIo that appears in the expression for a2 can be 
expressed in terms of Bessel functions. The interface perturbation amplitude a is 
given by 

u = - W,/Du,,, 
at r = rIo. 

The thermal properties of the liquid and solid phases of the test substance, 
succinonitrile, are approximately equal, i.e. K ,  = K ,  and P, = P,,. Furthermore, 

5-2 
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FIQURE 3. The Grashof number 0 at the onset of instability as a function of the spatial frequency 
k of a sinusoidal perturbation. The lowest two modes occur only for a crystal-melt interface, while 
the highest mode occurs for both a crystal-melt interface and a rigid interface. 

numerical calculations indicate that the effects of the crystal-melt surface tension 
and the density change upon solidification are not important. Thus, setting K L  = K,, 
E = 0 and y = 0, the boundary conditions (1 I)-( 14) reduce to 

(15) 

(16) 

wr = w+ = 0, 

- (DT,) wz+ (~u,,,) e = o 

and 

It is interesting to point out here that, if DO appearing in (17) is negligible, then the 
above boundary conditions become Wr = W+ = W, = 0 = 0, which are identical with 
those for rigid boundaries. 

The numerical methods used to solve the linear eigenvalue problem are similar to 
those previously described (Coriell et al. 1980). We fixed a, and varied G and ai, 
keeping the remaining parameters constant, until a solution was found of the 
differential equations satisfying the boundary conditions. The program SUPORT 
(Scott & Watts 1977) was used to solve the differential equations, and the program 
SNSQE (SLATEC Common Math Library, National Energy Software Center, 
Argonne National Lab., Argonne, IL, written by K. L. Hiebert, based on Powell 
1970) was used for the nonlinear iteration procedure. For the case of rigid boundaries, 
we have compared our results for G and ai with n = 0 and P, = 15 with those of 
table 1 of Choi & Korpela (1980), who used different numerical methods. We obtained 
agreement to about 1 yo. 

2.2. Numerical results and theoretical predictions 

Figure 3 displays the critical Grashof number (a, = 0) as a function of the spatial 
frequency for three different modes. The parameters used are P, = P,, = 22.8, 
E = 0.0283, y = 4.53 x A = 1.017 x lo4, K J K ,  = 1.0, K = 0.02 and L,/L= 1.0 
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Property Symbol Valuet 

Density of solid Ps 1.016 g 
Density of liquid pL 0.988 g 
Thermal expansivity (solid) 8, 5.6 x 10-4 K-3 

Thermal expansivity (liquid) P 8.1 x lop4 K-I 
V 2.6 x cm* s-l Kinematic viscosity 

Triple-point temperature Tp 331.23 K 
Latent heat of fusion H, 47.8 J 
Surface tension (solid-liquid) 7 8.94 x lo-' J/cm* 
Heat capacity of solid G,, 1.913 J g-' K-'$ 
Heat capacity of liquid C,, 2.000 J g-' K-'$ 
Thermal conductivity (solid) K ,  2.25 x J cm-I K-' s-'$ 

Thermal diffusivity (solid) a, 1 . 1 6 ~  cmz s-'$ 
Thermal diffusivity (liquid) a, 1.12 x om* s-l$ 

Thermal conductivity (liquid) K ,  2.23 x lov3 J cm-I K-' $ 

t A detailed source of these data can be found in Glicksman, Schaefer & Ayers (1976). 
$ Indicates value of property at melting point. 

TABLE 1. Properties of succinonitrile 

(a list of some physical constants is given in table 1).  The lowest and most 'dangerous ' 
mode is asymmetric, with a minimum at k = 1.35, G = 176, and ai = -0.977 x 
The lower symmetric mode ( n  = 0) has a minimum at k = 1.45, G = 464 and 
ai = -3.65 x whereas the higher symmetric mode has a minimum at k = 2.3, 
G = 2152 and ai = -43.7. With the assumption that E = y = 0, the values of G and 
ai change by less than 0.1 yo. Similarly, the results are insensitive to the form of the 
thermal boundary condition at the wire, e.g. changing from Dirichlet to Neumann 
conditions changes the critical Grashof number by about 0.5 yo. 

The higher symmetric mode in figure 3 is virtually identical with that obtained 
if the crystal-melt interface is replaced by a rigid isothermal boundary, i.e. replace 
the crystal-melt boundary conditions (1 1)-( 14) or (15)-( 17) with (9). For this mode, 
in fact, the factor multiplying 0 in (17) is very large compared with unity, and 0 % 0 
at  the crystal-melt boundary. There is little interface deformation in this mode. The 
lower axisymmetric and the asymmetric mode by contrast occur only when a 
compliant crystal-melt boundary is present. The magnitude of the coefficient of 0 
in (17) for these two modes is of order unity; 0 and DO become of the same 
order of magnitude. 

The higher symmetric mode may be denoted as a 'convective mode', since it 
involves little interface deformation and is similar to the mode that occurs at this 
Prandtl number when a rigid boundary is present. In  that case, the disturbance takes 
the form of a travelling wave (ai + 0) in the positive z-direction. The mechanism for 
instability is an energy transfer from the main flow to the disturbance due to the 
buoyancy force (Choi & Korpela 1980). The lower symmetric and the asymmetric 
mode, which occur only in the presence of fluid flow and a crystal-melt interface, will 
be denoted as 'coupled modes'. The wave speed for the convective mode is 
approximately the same as the maximum flow velocity, whereas the wave speeds for 
the coupled modes are about two orders of magnitude smaller than the maximum 
flow velocity. Apparently the crystal-melt transformation, which involves both 
melting and freezing with latent-heat absorption and release, can only follow the 
relatively slow fluid motions of the coupled mode. 

The dependence of G and ai on k for the lowest mode is shown in more detail in 
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FIQURE 4. Dependence of a and (it for the lowest mode (n = i ) ,  with P, = 22.8 and K = 0.02. 

figure 4. In  this case the disturbance travels upward (ai < 0) at the minimum 
Grashof number, although ui becomes positive for larger Grashof numbers on this 
branch. With n = 1 ( n  = - l ) ,  the disturbance has the form of a rotating left-handed 
(right-handed) helix. 

3. Experimental apparatus and procedures 
3.1. Apparatus 

The experimental apparatus consisted of a constant-temperature bath, temperature- 
control devices, observation tubes and a camera. The constant-temperature bath 
contained a mixture of ethylene glycol and distilled water. The volume of the constant- 
temperature bath was about 30 litres, and the heat-transfer fluid was kept 
homogeneous in temperature by a stirring motor. The temperature was regulated by 
a temperature-control system. 

The tank temperature was monitored with a platinum resistance thermometer and 
a null detector in combination with a thermometer bridge (Smith bridge). The 
thermometer’s resolution is 0.0004 K, and the bridge’s resolution is O.OOOO1 R. The 
temperature stability of the tank fluid after steady state was established was better 
than f 0.0005 K within a day. The specimen tube was viewed with a stereomicroscope 
through a 10 x 12 cm plateglass window located in the front side of the tank wall. 

The details of the specimen tube are shown in figure 5.  The axial heating wire was 
platinum, 0.0203 cm in diameter. This wire was soldered to copper current leads at 
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Phosphor- 
bronze Current lead 

Current and potential lead 

FIQURE 5. Geometric configuration of the main experimental tube. 

both ends, with a phosphor-bronze spring provided at the top end to maintain 
tension. 

The platinum wire served a dual purpose. First, it  provided the heat-generating 
source needed to keep the tube axis above the melting temperature of the test 
substance, succinonitrile. Secondly, it  served as a thermometer through the variation 
of its resistance with temperature. 

3.2. Determination of the critically unstable state 

When the temperature difference between the wire and the bath was increased 
sufficiently, an initially cylindrical solid-liquid interface transformed into a rotating 
helical interface. This new.state was observed to persist, with a well-defined rotation 
period and amplitude of interfacial deformation. 

It was observed that the base flow is vertical and laminar when the Grashof number 
is smaller than the critical value, except in the region 2-3 cm near the top and bottom, 
where the turning flows occur. This was confirmed by examining the trajectories of 
inert and density-matched particles which were introduced into the sample. When 
the Grashof number exceeded the critical value, then the particle trajectories became 
complex, indicating a change in the base flow pattern. The observed wavelength of 
the helical disturbance is small compared with the length of the cylinder. 

3.3. Measurement of helical-wave rotation period 
We employed three methods to measure the period of rotation. The first was the 
‘thermistor method’. As the helical interface rotates it creates a periodic thermal field 
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FIQURE 6. Sequential photographic records of crystal-melt interface 
movement (a) and the corresponding schematic plot ( b ) .  

in the solid region. The period of the temperature variation at any given point in the 
solid region is the same as that of the rotating interface. Consequently, the period 
can be measured with a thermistor imbedded in the solid region. 

The second method of measuring the rotation period employed photographic 
methods. Since the profile of the solid-liquid interface gave a sharp image on a 
photograph, a sequence of photographs would register the progressive movement of 
the interface. The period may then be determined as 

t, = At(A/Az ) ,  (18) 

where At and Ax are respectively the time interval and the corresponding displacement 
between two consecutive photographs, and h is the wavelength of the interface helix 
as shown in figure 6. 

For measuring long-period waves the thermistor technique had a distinct advantage 
because it is easily automated. Typical uncertainty of the measured data in these 
periods was about +2  Yo. However, for helix rotation periods under about 30 min, 
the photographic method is more satisfactory. 

The rotation period could also be determined by measuring the time required for 
a wave peak to travel past two fixed reference points on a scaled lens. For periods 
less than about twenty minutes, this method proved to be extremely accurate and 
convenient, yielding uncertainties within f 1 Yo. 

The radial gap of the liquid region was determined from photographs of the 
interface at the midsection of the fluid-flow chamber by measuring the average 
distance of the interface from the central heating wire; that is, 

(19) 
- 
L = I(-  2 rmax + fmin) - Pw-9 

where L i s  the average liquid radial gap, and fma, and fmin are the maximum and 
minimum radii of the interface wave. 
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I 
0.4 cm 

FIGURE 7. Sequence of photographs showing movement and wave development of the solid-liquid 
interface aa the heating current of the platinum wire was abruptly increased above a critical value. 
Bath temperature was 37 "C. 
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FIQURE 8. The dimensional wave amplitude of the growing interface instability shown in 
figure 7 as a function of time. The bath temperature was 37 "C. 

3.4. Growth-rate measurement 
The growth rate of the helical wave amplitude was measured photographically. All 
these measurements were made with an initially thin liquid annulus around the 
heating wire. A step increase of current sufficient to exceed the critical Grashof-number 
condition was then applied. The wave amplitude, defined as i(fmax-fmin), was 
recorded through a series of photographs taken a t  appropriate time sequences. 
Typical photographs and the corresponding measurements of wave amplitude are 
shown in figures 7 and 8 respectively. The wave amplitude grows in an exponential 
fashion (solid line), and finally levels off in the later stage owing to nonlinear effects 
(broken line). The time constant of growth of the wave amplitude, ar, is determined 
from the slope corresponding to  the linear range of figure 8. The accuracy of the data 
reported in figure 8 (and subsequent plots) may be taken as less than the size of the 
datum symbol displayed. 

3.5. Measurement of wave helicity 
It was observed that the helix associated with interface instability may have either 
a right- or a left-handed sense. The helicity can be observed easily by rotating the 
tube slightly in the tank. Alternatively, i t  can be determined by decreasing the 
heating-wire current abruptly, thus creating a dendritic or cellular interface, which 
can be recorded photographically. Figure 9 shows a photograph of such a dendritic 
surface. We observed that a rough dendritic ' belt' formed helically on the convex 
freezing surface of the helix. Note that in figure 9 the fine-scale features of the 'belt ' 
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I 
0.4 cm 

FIGURE 9. A dendritic ‘belt ’, formed by abrupt undercooling, showing 
a left-handed helical crystal-melt interface. 

are in sharp focus on the portions of the helix nearest the observer. By tracing the 
rotation of the ‘belt ’ we ascertained the helicity of the interface, i.e. whether it was 
right-handed or left-handed. 

4. Experimental results and discussion 
For a given radial gap t there is a critical temperature difference for which the 

cylindrical state is first unstable. The critical temperature difference and certain 
properties of the disturbed state vary as the liquid gap is changed. Experiments were 
performed for different values of to examine this dependence, and the results are 
described below. 

4.1. Scaling of the rotation period, wave-amplitude growth rate, wavelength and wave 
speed with respect to the average liquid radial gap 

It is noted that there is always a slight temperature gradient along the tube due to 
end effects. As a result, the helical deformation associated with instability tapers 
down the tube. For convenience we have consistently chosen a final state in which 
the helix disappears two-thirds of the way down the tube, and then measured various 
quantities near the middle section of the tube. 
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FIQURE 10. The rotation period of the helical crystal-melt interface as a function of the average 
liquid radial gap. 

FIQURE 11. The helical-wave-growth time constant as a function of the average radial gap of the 
liquid. 

Figure 10 shows the observed rotation period t ,  in the h a 1  state as a function of 
the average radial gap in the liquid on a log-log plot. The slope of this curve was 
found to be 4.82 (as discussed below, the linear stability analysis of the marginal state 
predicted a value of 5.0.) 

The growth rates of the wave amplitude were found to depend on the initial radial 
gap present in the liquid prior to the step increase in current (Fang 1983). Note that 
this initial gap is determined by the temperature of the coaxial heating wire for a 
given bath temperature, or equivalently is determined by the current passing through 
the wire. Preliminary experiments were performed to obtain an estimate for the value 
of the wire current necessary to obtain the desired final state. The initial wire 
current was then fixed at 70% of the final value in order to produce systematic 
measurements. 

In principle, the change from the cylindrical mode to the helical mode could be 
accomplished without changing L by simultaneously increasing T, and decreasing 
Tb by appropriate amounts. In practice, however, for a given experiment T, was 
increased and Tb was held constant. This results in the melting back of the crystalline 
annulus and an increase in E. This time-dependent change in is not considered 
in the theoretical analysis described above. In  comparing experiment and theory we 
have used the measured E of the helical state. 
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Figure 11 shows the measured radial wave-growth time constant t ,  = l/3, as a 
function of the average radial gap. A log-log fit to these data with a slope of 4.76 
was found through least-square regression. It appears that with the chosen final 
conditions t, has almost the same scaling as does t ,  with respect to the liquid radial 
gap z. The relation between Cri = 2n/tp and 3, is shown in figure 12. As we see from 
this figure, a linear relationship is found with a slope close to unity, indicating that 
3, is proportional to iYi, or equivalently that the dimensional wave-growth time 
constant is proportional to the dimensional rotation period. 

Figure 13 shows the measured wavelength h as a function of the average liquid 
radial gap z. A linear relation exists between them with a slope of about 1.04. 

The axial wave velocity, defined as the wavelength divided by the rotation period 
t,, is shown in figure 14, as a function of the average liquid radial gap. A slope of 
- 3.67 is found from these data through linear regression analysis. 

We show in figure 15 the measured Grashof number in the final state as a function 
of ATb, defined as the difference between the melting point of SCN (taken as 58.08 "C) 
and the bath temperature. As we see in figure 15, the Grashof numbers are relatively 
constant, decreasing only slightly as ATb is increased from 0 to 30 K. 

We have carried out another series of experiments to obtain a value for the critical 
Grashof number. These experiments are done by keeping the bath temperature Tb 
and the initial wire temperature T, (and thus the initial melt gap) fixed, and then 
varying the ha1 wire temperature by adjusting the wire current. The results are 
shown in figure 16. We extrapolated the curve and obtained a critical Grashof number 
of 141.8, which is surprisingly close to the theoretically calculated value of 140.2. We 
observed that the growth rate is proportional to G-G* for G-G* < 20, which is 
consistent with numerical calculations. However, the theoretical proportionality 
constant is about 50 yo larger than the experimental value. 

4.2. Comparison with theoretical calculations and discussion 
A summary of the current experimental data and corresponding theoretical linear 
stability calculations is given in table 2. The calculated values are denoted by an 
asterisk. In these calculations it is assumed that B = y = cr, = 0, P, = P,, = 22.8, 
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FIGURE 13. The critical wavelength as a function of the average radial gap of the liquid. 

FIGURE 14. The wave velocity as a function of the average radial gap of the liquid. 

K J K ,  = 1, T, = 58.08 "(2 and n = 1 (for asymmetric instability). The data required 
for these calculations are the radii Fw, F, and f,+ E,. Comparison between experi- 
mental values and those by numerical calculations reveals the following. 

(1) The experimental values of ai are systematically smaller than the calculated 
values by 1 0 4 5  yo, and these differences become smaller as the liquid gap becomes 
larger. It is important to recognize that the value of ai and L are measured for the 
fully developed waves, and thus may be subject to  nonlinear effects which are not 
included in the linear perturbation theory. 

(2) The theoretical growth rate (T,* near marginal stability is proportional t o  the 
difference G -  G* between the Grashof number and the critical Grashof number. We 
note that the values ar shown in table 2 correspond to the initial portion of the wave 
development. We have also calculated Grashof numbers based on the measured values 
of 5, given in table 2 ; these results indicate that all the experiments were conducted 
a t  Grashof numbers ranging from 8 to  11% above the Grashof number G* 
corresponding to marginal stability (5, = 0). 

(3) Experimental and theoretical values of the dimensionless wavenumber k are 
also given in table 2. The measured values are, in general, higher than the calculated 
values by about 10-20%. It is interesting to  note that, despite this difference, both 
sets of data show systematically that the dimensionless values k and k* are relatively 
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FIGURE 16. The wave growth rate aa a function of G. 

constant as Lvaries from about 0.14 to 0.46 cm. It is this behaviour that indicates 
that the dimensional wavelength is essentially proportional to the liquid gap. 
(4) The predicted and measured critical Grashof numbers agree with each other 

in general. Moreover, both the experimental data and the theoretical calculations 
show that the critical Grashof numbers depend weakly on E. 

FIGURE 15. The critical Grashof number G as a function of the temperature difference AT, 
between the meliing point and the bath temperature. 
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( 5 )  We also found that the dimensionless parameter Q = A5,E2/v is a weakly 
varying function of E. As a matter of fact, the relative constancy of Q* leads to the 
theoretical prediction that 5, is proportional to E-5, since A is proportional to 0. The 
experimental Q-values are systematically somewhat smaller than those calculated 
theoretically, because the experimental values of Fi are smaller than the calculated 
ones. 

are also compared. Calculated values were obtained 
by assuming a laminar flow in the melt such that (a) no radial convection occurs, 
and (b) heat is transferred radially only through conduction. The measured values 
for the bath temperature (with a correction for heat transfer in the glass) and the 
wire temperature then permit a value of to be computed. These calculated values 
E* are systematically smaller than the measured experimental values z. This 
difference becomes greater as the gap becomes larger, and reaches a factor of two at 

= 0.455 cm (as the bath temperature approaches the melting point of SCN). Under 
supercritical conditions, of course, lateral heat transport by convection becom,es 
effective, and approximate values of z based on the unperturbed solutions need not 
be accurate if the convective heat transport becomes comparable to  that due to 
conduction. 

(6) Two determinations of 

5. Conclusions 
Experiments and linear stability analysis were carried out to characterize the 

effects of convective flow on the crystal-melt interface. Theory has predicted and 
experiment has demonstrated an interface instability under conditions for which, in 
the absence of flow, the solid-melt interface would be morphologically stable. Two 
distinct modes were observed. In  the case that the Grashof number is smaller than 
some critical value, the interface is stable to perturbations and remains cylindrical 
with the flow axisymmetric. However, in the case that the Grashof number is larger 
than a certain critical value, the interface is unstable to perturbations and becomes 
helical and the flow becomes non-axisymmetric. The helical interface was observed, 
moreover, to rotate with a period ranging from a few minutes to more than ten hours, 
depending on the radial gap of the liquid region. 

The observed critical Grashof numbers for our system with the deformable 
crystal-melt interface are an order of magnitude smaller than those predicted by 
Choi & Korpela (1981) and Shaaban & Ozisik (1982) for systems with rigid walls. 
Comparison between experimental data and linear perturbation analysis shows a 
general agreement in both the magnitudes and scalings of various parameters. 

This work was conducted under the support of the Materials Processing in Space 
Program, National Aeronautics and Space Administration, with liaison through the 
Marshall Space Flight Center (MSFC) and the Lewis Research Center (LeRC) under 
NASA grant NAG 3-333. 
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